Home
Schedule
Conference Info
Sponsorship Information
IBM Watson AI Day
Registration
Press Registration
Speakers
Sessions
Sponsors
Exhibitors
JETRO × Six Prefectures of Japan Pavilion Exhibitors
Media Sponsors
  Topics
  Call For Papers
  Hotel Info
  Past Events
Untitled Document
2017 West
Premium Sponsors
Diamond



Platinum
@DevOpsSummit

Bronze










Untitled Document
2017 West
Keynote Sponsor


Untitled Document
2017 West Exhibitors
























@ThingsExpo











Untitled Document
2017 West JETRO ×
Six Prefectures
of Japan
Pavilion Exhibitors



















Untitled Document
2017 West Media Sponsors














Untitled Document
2017 East
Premium Sponsors
Diamond



Platinum
@DevOpsSummit

@DevOpsSummit

Silver
@DevOpsSummit


Bronze










Untitled Document
2017 East Exhibitors
@DevOpsSummit




































Untitled Document
2017 East Media Sponsors
















Untitled Document
2016 West
Premium Sponsors
Platinum Plus



Silver
@ThingsExpo

Bronze







Untitled Document
2016 Welcome Reception Sponsor

Untitled Document
2016 West Exhibitors










@DevOps Summit






@DevOps Summit

@WebRTC Summit












@WebRTC Summit









@DevOps Summit

Untitled Document
2016 West Media Sponsors











Untitled Document
2016 East Gold Sponsors

@ThingsExpo

Untitled Document
2016 East Silver Sponsors


@DevOps Summit

Untitled Document
2016 East Bronze Sponsors

Cloud Expo







Cloud Expo

Untitled Document
2016 East Vendor Presentation Sponsors

@DevOps Summit

Untitled Document
2016 East Exhibitors

@DevOps Summit





@ThingsExpo



@DevOps Summit

@ThingsExpo


@DevOps Summit









@DevOps Summit







@DevOps Summit










Untitled Document
2016 East Media Sponsors










Untitled Document
2015 West Gold Sponsor

Untitled Document
2015 West Silver Sponsor


Untitled Document
2015 West Bronze Sponsors

Cloud Expo |@ThingsExpo

Cloud Expo | DevOps Summit


@ThingsExpo





@DevOps Summit

@ThingsExpo


@ThingsExpo

Untitled Document
2015 West Exhibitors












@DevOps Summit





@DevOps Summit












@DevOps Summit

@DevOps Summit




@ThingsExpo


@DevOps Summit


Untitled Document
2015 West Session Sponsor

Untitled Document
2015 West E-Bulletin Sponsor

DevOps Summit

Untitled Document
2015 West
Association Sponsors

Untitled Document
2015 West
Media Sponsor

Untitled Document
2015 East Gold Sponsor


WebRTC Summit

DevOps Summit

Untitled Document
2015 East Silver Sponsor

DevOps Summit

WebRTC Summit


Untitled Document
2015 East Bronze Sponsor

DevOps Summit

Cloud Expo | DevOps Summit
@ThingsExpo

DevOps Summit

DevOps Summit

Untitled Document
2015 East Delegate Bag Sponsor


Untitled Document
2015 East Exhibitors


DevOps Summit


@ThingsExpo



DevOps Summit







Cloud Expo | @ThingsExpo

@ThingsExpo
@ThingsExpo
DevOps Summit

DevOps Summit
@ThingsExpo
DevOps Summit
DevOps Summit
DevOps Summit
DevOps Summit
DevOps Summit



@ThingsExpo

Untitled Document
2015 East
Media Sponsor

AI-Defined Infrastructure | @CloudExpo #AI #DX #IoT #ArtificialIntelligence
The Foundation for New Generation Business Models and Applications

In 2016, artificial intelligence (AI) reached its climax. Research and advisory firm Tractica predicted that the annual worldwide AI revenue will grow from $643.7 million in 2016 to $38.8 billion by 2025. The revenue for enterprise AI applications will increase from $358 million in 2016 to $31.2 billion by 2025, representing a compound annual growth rate (CAGR) of 64.3%. Thus, IT and business decision makers must face up to the potentials of AI already today. For each kind of organization this leads to the question, which type of technologies or infrastructure they can leverage to operate an AI-ready enterprise stack.

What Is Artificial Intelligence (AI)?
In 1955, Prof. John McCarthy defined AI as "The goal of AI is to develop machines that behave as though they were intelligent." Discussing "intelligent" in this context, we are talking about a vigorous system. A system that must be considered as a raw IQ container, a system that needs unstructured input to train its senses, a system that needs a semantic understanding of the world to be able to take further actions. A system that needs a detailed map of its context to act independently and transfer experience from one context to another, a system that is equipped with all the necessities to develop, foster and maintain knowledge.

It is our responsibility to share our knowledge with these machines as we would share it with our children, spouses or colleagues. This is the only way to transform these machines, made of hard- and software, into a status we would describe as "smart", helping them to become more intelligent by learning on a daily basis, building the groundwork to create a self-learning system. In doing so, research distinguishes three types of AIs:

  • Strong AI: A strong AI (or superintelligence) is a self-aware machine with ideal thoughts, feelings, consciousness and all the necessary links. For all those who are already looking forward to a reality á la "Her" or "Ex_Machina" still need to wait. Large neural networks have millions of neurons. Brains have billions of neurons. Neural networks only simulate the electrical system in a brain, the brain also has a chemical, potentially a quantum mechanics based system. The layer based modelling of deep learning networks is to simplify training, the brain has no such restrictions. Neural networks are about as far away from a brain that thinks as a snail is from a supersonic jet. Thus, a strong AI doesn't exist yet and is very far away.
  • Narrow AI: Most business cases in AI focus on solving particular very pointed challenges. These narrow AIs are great at optimizing specific tasks like recommending songs on Pandora ormanaging analyses to improve tomato growth in a greenhouse.
  • General AI: A general AI can handle tasks from different areas and origins with the ability to shorten training time from one area to the next by applying experience gathered in one area and applied in a different area. This knowledge transfer is only possible if there is a semantic connection between these areas. The stronger and denser this connection, the faster and easier knowledge transition is achieved. In comparison to a narrow AI, a general AI has all the necessary knowledge and abilities to improve not only tomato growth in a greenhouse but cucumber, eggplant, peppers, radishes and kohlrabi as well. Thus, a general AI is a system, that can handle more than just one specific task.

However, one thing is obvious. Without technologies, such as cloud computing, AI wouldn't have achieved its boom particularly today. Both cloud services and progress in machine intelligence have made it easier for organizations to apply AI-based functionalities to interact closer with its customers. More and more companies like Airbnb, Netflix, Uber or Expedia are already using cloud-based systems to process AI relevant tasks that draw on an intensive utilization of CPU/ GPU as well as services for comprehensive computing and analysis tasks.

In the context of their AI strategy, companies should evaluate AI services from different cloud providers. Another part of their strategy should contain an AI-defined infrastructure. The foundation for this kind of infrastructure is a general AI that unifies three typical human characteristics, which empower an organization to autonomously operate its IT and business processes.

  • Learning: The general AI receives best practices and reasoning from experts based on ongoing learning units. For this purpose, the knowledge is taught in granular pieces that consist of discrete parts of a process. In the context of a greenhouse, the experts teach the AI any process step by step, e.g., how to grow cucumbers, eggplants or paprika. In doing so, they share their context-based knowledge with the AI that includes among others "what has to be done" and "why this has to be done".
  • Understanding: By creating a semantic data graph the general AI gets an understanding of the world in which the organization is acting with its IT and business objectives. Thus, the semantic data graph of a greenhouse would consolidate different contexts (e.g., information, characteristics and specifics of the greenhouse, cucumber culture, eggplant culture and paprika culture) and enrich (compare learning) it on an ongoing basis. The IT of an organization plays an important role, since all data are running together here.
  • Solving: With the concept of machine reasoning, problems are solved in ambiguous and changing environments. The general AI dynamically reacts to the ever-changing context, selecting the best course of action. Based on the trained knowledge (learning) and the creation of the semantic graph (understanding) the general AI can grow more than one single type of vegetable in a greenhouse. This is ensured with the growing amount of trained knowledge pieces that lead to a knowledge pool that is further optimized by machine selection of best knowledge combinations for problem resolution. This type of collaborative learning improves process time task by task. However, the number of possible permutations grows exponentially with added knowledge. Connected to a knowledge core, the General AI continuously optimizes performance by eliminating unnecessary steps and even changing routes based on other contextual learning. Thus, the bigger the semantic data graph gets, the better and more dynamically further types of vegetables can be cultured.

What Requirements Concerning Infrastructure Environments Does an AI Have?
Right now, AI is the technology that has the potential not only to improve existing infrastructure like cloud environments but expedite a new generation of infrastructure technologies as well. As an important technology trend, AI has influenced a new generation of development frameworks as well as a new generation of hardware technologies to run scalable AI applications.

Mobile and IoT applications have only minor requirements concerning runtime environments to an infrastructure. However, it is critical to provide appropriate services to build a backend for those types of applications. By contrast, AI applications do not only expect sophisticated backend services but also optimized runtime environments that are adapted for GPU intensive requirements of AI solutions. AI applications challenge the infrastructure with regards to the simultaneous task processing in very short time cycles. For accelerating deep learning applications in particular GPU processors are employed. GPU optimized applications distribute CPU-intensive areas of an application to the GPU and let the ordinary computations handle by the CPU. In doing so, the execution of the entire application is accelerated. The advantage of a GPU towards a CPU is reflected in the respective architectures. A CPU is exclusively designed for serial data processing and only has a few cores. A GPU, however, is composed of a parallel architecture with a vast number of small cores that process the tasks simultaneously. According to NVIDIA, the application throughput of a GPU is 10 to 100 times higher in comparison to a CPU. Thus, an infrastructure should be able to provide a deep learning framework such as TensorFlow and Torch over hundreds or thousands of nodes on a demand basis that immediately are deployed with the optimal CPU configuration.

The following list (in a partial state) deals with the requirements for infrastructure to support AI applications:

  • Support of current frameworks: Infrastructure must be able to support AI application based on AI frameworks like TensorFlow, Caffe, Theano and Torch the same way as web applications and backend processes. Thus, an infrastructure should not exclusively focus on AI frameworks but design the portfolio in the interests of a developer.
  • GPU optimized environment: An infrastructure has to make sure that every AI process can be processed. Thus, it must support GPU environments in order to provide fast computational power. Microsoft was the frontrunner in this area by offering its N-series GPU instances.
  • Management environment and tools: One of the biggest challenges of current infrastructure environments is the drawback of management tools for running AI frameworks. Here, in particular, the direct interaction between AI frameworks and the infrastructure is necessary to ensure the best balance and thus deliver the best performance.
  • AI-integrated infrastructure services: Infrastructure provider must and will not only support AI functionalities but integrate AI as a central part of their infrastructure and service stacks. This type of an AI-defined Infrastructure won't only increase the intelligence of cloud services and applications but also simplify the setup and operations of the infrastructure by the customer.
  • Machine Reasoning: Infrastructure providers who provide their customers with technologies for machine reasoning are helping them to solve problems in ambiguous and changing environments. Based on machine reasoning the AI environment is able to dynamically react to the ever-changing context, selecting the best course of action. This is ensured by selecting the best knowledge combinations for problem resolution. In the end, the results are optimized with machine learning algorithms.

Infrastructure Environments and Technologies for AI
In the course of years, cloud platform provider made enormous investments into AI functionalities and services. The leading public cloud provider in particular Amazon, Microsoft and Google are in the lead. But also several PaaS providers extended their offerings with AI services. The current AI technology landscape consists of the following three main categories:

  • Cloud machine learning (ML) platforms:Technologies like AWS Machine Learning or Google Machine Learning make it possible to use machine learning models based on proprietary technologies. Because even if Google Cloud ML sets on TensorFlow, most of the other cloud based ML services do not allow to execute AI applications that e.g. have been written in Theano, Torch, TensorFlow or Caffe.
  • AI cloud services:Technologies like Microsoft Cognitive Services, Google Cloud Vision or Natural Language APIs enable the use of complex AI abilities based on a simple API call. This allows organizations to develop applications with AI capabilities without investing into and owning the necessary AI infrastructure.
  • Technologies for private and public cloud environments: Technologies like HIRO are designed to run on top of public cloud environments like Amazon Web Services as well as private clouds such as OpenStack or VMware. They enable organizations to develop and operate transcontextual AI-based business models based on a general AI.

Further AI relevant categories and vendors are:

  • Machine Learning: Rapidminer, Context Relevant, H20, Datarpm, LiftIngniter, Spark Beyond, Yhat, Wise.io, Sense, GraphLab, Alpine, Nutonian
  • Conversational AI/ Bots: Mindfield, SemanticMachines, Maluuba, Mobvoi, KITT AI, Clara, Automat, Wit.ai, Cortical.io, Idibon, Luminoso
  • Vision: Clarifai, Chronocam, Orbital Insight, Pilot.ai, Captricity, Crokstyle
  • Auto: NuTonomy, Drive.ai, AI Motive, Nauto, Nexar, Zoox
  • Robotics: Ubtech, Anki, Rokid, Dispatch
  • Cybersecurity: Cyclance, Sift Science, Spark Cognition, Deep Instict, Shift Technology, Dark Trace
  • BI & Analytics: DataRobot, Trifaca, Tamr, Esigopt, Paxata, Dataminr, CrowdFlower, Logz.io
  • Ad, Sales and CRM: TalkIQ, Deepgram, Persado, Appier, Chors, InsideSales.com, Drawbridge, DigitalGenius, Resci
  • Healthcare: Freenome, Cloud Medx, Zebra, Enlitic, Two AR, iCarbonX, Atomwise, Deep Genomics, Babylon, Lunit
  • Text Analysis: Textio, Fido.ai, Narrative
  • IoT: Nanit, Konux, Verdigris, Sight Machine
  • Commerce: Bloomreach, Mode.ai
  • Fintech & Insurance: Cape Analytics, Kensho, Numerai, Alphasense, Kasisto

At the end of the day, the progressive developments of AI technologies are going to influence infrastructure environments and let them shift from a supporting mode towards a model where AI applications get the equal support like today's web applications and services.

The Future Is an AI-enabled Enterprise
An AI-enabled Infrastructure is an essential part of today's enterprise stack and builds the foundation for the AI-enabled enterprise. Because one thing is obvious. There are multiple challenges established companies are facing nowadays. Like the often-quoted war for talent or the inability of many large corporates to change effectively. But there is still an underestimated threat called competition - not from their own peers - but from high-tech companies like Amazon, Google, Facebook, etc., that are unstoppably marching into their markets. These high-tech companies invade the well-known competitive space of established companies with unimaginable financial resources and by hijacking the consumer life cycle.

Amazon is just one example who already has started to cut out the middleman within the own supply chain. We can be sure that business models of companies like DHL, UPS or FedEx are going to look different in the future - hint: Amazon Prime Air. Furthermore, Amazon has arranged everything to become a complete end-to-end provider of goods - digital as well as non-digital. It's likely that it won't be long until Facebook gets its banking license. Access to potential customers, enough information about its users and the necessary financial resources already exist. Consequently, established companies need to have powerful answers if they still want to exist tomorrow.

AI is one of these answers in the corporate toolkit to help overcome these competitive threats. However, time is running out for established companies. High-tech companies have already become uncatchable.

About Rene Buest
Rene Buest is Director of Market Research & Technology Evangelism at Arago. Prior to that he was Senior Analyst and Cloud Practice Lead at Crisp Research, Principal Analyst at New Age Disruption and member of the worldwide Gigaom Research Analyst Network. At this time he was considered a top cloud computing analyst in Germany and one of the worldwide top analysts in this area. In addition, he was one of the world’s top cloud computing influencers and belongs to the top 100 cloud computing experts on Twitter and Google+. Since the mid-90s he is focused on the strategic use of information technology in businesses and the IT impact on our society as well as disruptive technologies.

Rene Buest is the author of numerous professional technology articles. He regularly writes for well-known IT publications like Computerwoche, CIO Magazin, LANline as well as Silicon.de and is cited in German and international media – including New York Times, Forbes Magazin, Handelsblatt, Frankfurter Allgemeine Zeitung, Wirtschaftswoche, Computerwoche, CIO, Manager Magazin and Harvard Business Manager. Furthermore he is speaker and participant of experts rounds. He is founder of CloudUser.de and writes about cloud computing, IT infrastructure, technologies, management and strategies. He holds a diploma in computer engineering from the Hochschule Bremen (Dipl.-Informatiker (FH)) as well as a M.Sc. in IT-Management and Information Systems from the FHDW Paderborn.

Presentation Slides
Traditional on-premises data centers have long been the domain of modern data platforms like Apache Hadoop, meaning companies who build thei...
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously...
CloudEXPO Stories
DXWorldEXPO LLC announced today that Big Data Federation to Exhibit at the 22nd International CloudEXPO, colocated with DevOpsSUMMIT and DXWorldEXPO, November 12-13, 2018 in New York City. Big Data Federation, Inc. develops and applies artificial intelligence to predict financial and economic events that matter. The company uncovers patterns and precise drivers of performance and outcomes with the aid of machine-learning algorithms, big data, and fundamental analysis. Their products are deployed by some of the world's largest financial institutions. The company develops and applies innovative machine-learning technologies to big data to predict financial, economic, and world events. The team is a group of passionate technologists, mathematicians, data scientists and programmers in Silicon Valley with over 100 patents to their names. Big Data Federation was incorporated in 2015 and is ...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like "How is my application doing" but no idea how to get a proper answer.
All in Mobile is a place where we continually maximize their impact by fostering understanding, empathy, insights, creativity and joy. They believe that a truly useful and desirable mobile app doesn't need the brightest idea or the most advanced technology. A great product begins with understanding people. It's easy to think that customers will love your app, but can you justify it? They make sure your final app is something that users truly want and need. The only way to do this is by researching target group and involving users in the designing process.
CloudEXPO New York 2018, colocated with DevOpsSUMMIT and DXWorldEXPO New York 2018 will be held November 12-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI and Machine Learning to one location.
CloudEXPO | DevOpsSUMMIT | DXWorldEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.

Register and Save!
Save $405
on your “Golden Pass”!
before October 30, 2017!
Call 201.802.3020


Santa Clara Call For Papers Open
Submit
submit your speaking proposal
for the upcoming Big Data at Cloud Expo in
Santa Clara!
[Oct 31 - Nov 2, 2017]


Big Data 2017 West
Sponsorship Opportunities
Please Call
201.802.3021
events (at) sys-con.com
Sponsorship opportunities are now open for Big Data at Cloud Expo 2017 Santa Clara, Oct 31-Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, and Big Data at Cloud Expo 2018 New York, June 5-7, 2018, at the Javits Center in New York, NY. For sponsorship, exhibit opportunities and show prospectus, please contact Carmen Gonzalez, carmen (at) sys-con.com.



Big Data Expo Silicon Valley All-Star Speakers Include

MATTHIEU
Octoblu

MAHADEV
Cisco

MCCARTHY
Bsquare

FELICIANO
AMDG

PAUL
VenueNext

SMITH
Eviot

BEAMER
goTraverse

GETTENS
goTraverse

CHAMBLISS
ReadyTalk

HERBERTS
Cityzen Data

REITBAUER
Dynatrace

WILLIAM-
SON

Cloud
Computing

SCHMARZO
EMC

WOOD
VeloCloud

WALLGREN
Electric Cloud

VARAN-
NATH

GE

SRIDHARA-
BALAN

Pulzze

METRIC
Linux

MONTES
Iced

ARIOLA
Parasoft

HOLT
Daitan

CUNNING-
HAM

ReadyTalk

BEDRO-
SIAN

Cypress

NAMIE
Cisco

NAKA-
GAWA

Transparent
Cloud

SHIBATA
Transparent
Cloud

BOYD
Neo4j

WARD
DWE

MILLER
Covisint

EVAVOLD
Covisint

MEINER
Oracle

MEEHAN
Esri

WITECK
Citrix

LIANG
Rancher Labs

BUTLER
Tego

ROWE
IBM Cloud

SKILLERN
Intel

SMITH
Numerex
Big Data Expo New York All-Star Speakers Include

CLELAND
HGST

VASILIOU
Catchpoint

WALLGREN
Electric Cloud

HINCH-
CLIFFE

7Summits

DE SOUZA
Cisco

RANDALL
Gartner

ARMSTRONG
AppNeta

SMALLTREE
Cazena

MCCARTHY
Bsquare

DELOACH
Infobright

QUINT
Ontegrity

MALAUCHLAN
Buddy Platform

PALIOTTA
Vector

MITRA
Cognizant

KOCHER
Grey Heron

PAPDO
POULOS

Cloud9

HARLAN
Two Bulls

GOLO
SHUBIN

Bit6

PROIETTI
Location
Smart

MARTIN
nfrastructure

MOULINE
Everbridge

MARSH
Blue Pillar

PARKS
SecureRF

PEROTTI
Plantronics

HOFFMAN
EastBanc

WATSON
Trendalyze

BENSONOFF
Unigma

SHAN
CTS

MATTELA
Redpine

GILLEN
Spark
Coginition

SOLT
Netvibes

BERNARDO
GE Digital

ROMANSKY
TrustPoint

BEAMER
GoTransverse

LESTER
LogMeIn

PONO
-MAREVA

Google

SINGH
Sencha

CALKINS
Amadeus

KLEIN
Rachio

HOASIN
Aeris

SARKARIA
PHEMI

SPROULE
Metavine

SNELL
Intel

LEVINE
CytexOne

ALLEN
Freewave

MCCALLUM
Falconstor

HYEDT
Seamless

Big Data Expo Silicon Valley All-Star Speakers Include

SCHULZ
Luxoft

TAMBURINI
Autodesk

MCCARTHY
Bsquare

THURAI
SaneIoT

TURNER
Cloudian

ENDO
Intrepid

NAKAGAWA
Transparent

SHIBATA
Transparent

LEVANT-LEVI
testRTC

VARAN NATH
GE

COOPER
M2Mi

SENAY
Teletax

SKEEN
Vitria

KOCHER
Grey Heron

GREENE
PubNub

MAGUIRE
HP

MATTHIEU
Octoblu

STEINER-JOVIC
AweSense

LYNN
AgilData

HEDGES
Cloudata

DUFOUR
Webroot

ROBERTS
Platform

JONES
Deep

PFEIFFER
NICTA

NIELSEN
Redis

PAOLALANTORIO
DataArchon

KAHN
Solgenia

LOPEZ
Kurento

KIM
MapR

BROMHEAD
Instaclustr

LEVINE
CytexOne

BONIFAZI
Solgenia

GORBACHEV
Intelligent
Systems

THYKATTIL
Navisite

TRELOAR
Bebaio

SIVARAMA-
KRISHNAN

Red Hat
Cloud Expo New York All-Star Speakers Included

DE SOUZA
Cisco

POTTER
SafeLogic

ROBINSON
CompTIA

WARUSA
-WITHANA

WSO2 Inc

MEINER
Oracle

CHOU
Microsoft

HARRISON
Tufin

BRUNOZZI
VMware

KIM
MapR

KANE
Dyn

SICULAR
Basho

TURNER
Cloudian

KUMAR
Liaison

ADAMIAK
Liaison

KHAN
Solgenia

BONIFAZI
Solgenia

SUSSMAN
Coalfire

ISAACSON
RMS

LYNN
CodeFutures

HEABERLIN
Windstream

RAMA
MURTHY

Virtusa

BOSTOCK
IndependenceIT

DE MENO
CommVault

GRILLI
Adobe

WILLIAMS
Rancher Labs

CRISWELL
Alert Logic

COTY
Alert Logic

JACOBS
SingleHop

MARAVEI
Cisco

JACKSON
Softlayer

SINGH
IBM

HAZARD
Softlayer

GALLO
Softlayer

TAMASKAR
GENBAND

SUBRA
-MANIAN

Emcien

LEVESQUE
Windstream

IVANOV
StorPool

BLOOMBERG
Intellyx

BUDHANI
Soha

HATHAWAY
IBM Watson

TOLL
ProfitBricks

LANDRY
Microsoft

BEARFIELD
Blue Box

HERITAGE
Akana

PILUSO
SIASMSP

HOLT
IBM Cloudant

SHAN
CTS

PICCININNI
EMC

BRON-
GERSMA

Modulus

PAIGE
CenturyLink

SABHIKHI
Cognitive Scale

MILLS
Green House Data

KATZEN
CenturyLink

SLOPER
CenturyLink

SRINIVAS
EMC

TALREJA
Cisco

GORBACHEV
Systems Services Inc.

COLLISON
Apcera

PRABHU
OpenCrowd

LYNN
CodeFutures

SWARTZ
Ericsson

MOSHENKO
CoreOS

BERMINGHAM
SIOS

WILLIS
Stateless Networks

MURPHY
Gridstore

KHABE
Vicom

NIKOLOV
GetClouder

DIETZE
Windstream

DALRYMPLE
EnterpriseDB

MAZZUCCO
TierPoint

RIVERA
WHOA.com

HERITAGE
Akana

SEYMOUR
6fusion

GIANNETTO
Author

CARTER
IBM

ROGERS
Virtustream
Cloud Expo Silicon Valley All-Star Speakers

TESAR
Microsoft

MICKOS
HP

BHARGAVA
Intel

RILEY
Riverbed

DEVINE
IBM

ISAACSON
CodeFutures

LYNN
HP

HINKLE
Citrix

KHAN
Solgenia

SINGH
Bigdata

BEACH
SendGrid

BOSTOCK
IndependenceIT

DE SOUZA
Cisco

PATTATHIL
Harbinger

O'BRIEN
Aria Systems

BONIFAZI
Solgenia

BIANCO
Solgenia

PROCTOR
NuoDB

DUGGAL
EnterpriseWeb

TEGETHOFF
Appcore

BRUNOZZI
VMware

HICKENS
Parasoft

KLEBANOV
Cisco

PETERS
Esri

GOLDBERG
Vormetric

CUMBER-
LAND

Dimension

ROSENDAHL
Quantum

LOOMIS
Cloudant

BRUNO
StackIQ

HANNON
SoftLayer

JACKSON
SoftLayer

HOCH
Virtustream

KAPADIA
Seagate

PAQUIN
OnLive

TSAI
Innodisk

BARRALL
Connected Data

SHIAH
AgilePoint

SEGIL
Verizon

PODURI
Citrix

COWIE
Dyn

RITTEN-
HOUSE

Cisco

FALLOWS
Kaazing

THYKATTIL
TimeWarner

LEIDUCK
SAP

LYNN
HP

WAGSTAFF
BSQUARE

POLLACK
AOL

KAMARAJU
Vormetric

BARRY
Catbird

MENDEN-
HALL

SUPERNAP

SHAN
KEANE

PLESE
Verizon

BARNUM
Voxox

TURNER
Cloudian

CALDERON
Advanced Systems

AGARWAL
SOA Software

LEE
Quantum

OBEROI
Concurrent, Inc.

HATEM
Verizon

GALEY
Autodesk

CAUTHRON
NIMBOXX

BARSOUM
IBM

GORDON
1Plug

LEWIS
Verizon

YEO
OrionVM

NAKAGAWA
Transparent Cloud Computing

SHIBATA
Transparent Cloud Computing

NATH
GE

GOKCEN
GE

STOICA
Databricks

TANKEL
Pivotal Software


Testimonials
This week I had the pleasure of delivering the opening keynote at Cloud Expo New York. It was amazing to be back in the great city of New York with thousands of cloud enthusiasts eager to learn about the next step on their journey to embracing a cloud-first worldl."
@SteveMar_Msft
General Manager of Window Azure
 
How does Cloud Expo do it every year? Another INCREDIBLE show - our heads are spinning - so fun and informative."
@SOASoftwareInc
 
Thank you @ThingsExpo for such a great event. All of the people we met over the past three days makes us confident IoT has a bright future."
Yasser Khan
CEO of @Cnnct2me
 
One of the best conferences we have attended in a while. Great job, Cloud Expo team! Keep it going."

@Peak_Ten


Who Should Attend?
Senior Technologists including CIOs, CTOs & Vps of Technology, Chief Systems Engineers, IT Directors and Managers, Network and Storage Managers, Enterprise Architects, Communications and Networking Specialists, Directors of Infrastructure.

Business Executives including CEOs, CMOs, & CIOs , Presidents & SVPs, Directors of Business Development , Directors of IT Operations, Product and Purchasing Managers, IT Managers.

Download Cloud Expo Show Guide
Cloud Expo Show Guide
Download PDF

Join Us as a Media Partner - Together We Can Rock the IT World!
SYS-CON Media has a flourishing Media Partner program in which mutually beneficial promotion and benefits are arranged between our own leading Enterprise IT portals and events and those of our partners.

If you would like to participate, please provide us with details of your website/s and event/s or your organization and please include basic audience demographics as well as relevant metrics such as ave. page views per month.

To get involved, email Patricia Henderson at patricia@sys-con.com.

Digital Transformation Blogs
DXWorldEXPO LLC announced today that Big Data Federation to Exhibit at the 22nd International CloudEXPO, colocated with DevOpsSUMMIT and DXWorldEXPO, November 12-13, 2018 in New York City. Big Data Federation, Inc. develops and applies artificial intelligence to predict financial and economic events that matter. The company uncovers patterns and precise drivers of performance and outcomes with the aid of machine-learning algorithms, big data, and fundamental analysis. Their products are deployed by some of the world's largest financial institutions. The company develops and applies innovative ...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to bus...
All in Mobile is a place where we continually maximize their impact by fostering understanding, empathy, insights, creativity and joy. They believe that a truly useful and desirable mobile app doesn't need the brightest idea or the most advanced technology. A great product begins with understanding people. It's easy to think that customers will love your app, but can you justify it? They make sure your final app is something that users truly want and need. The only way to do this is by researching target group and involving users in the designing process.